Processing of Chlamydia abortus Polymorphic Membrane Protein 18D during the Chlamydial Developmental Cycle

نویسندگان

  • Nick M. Wheelhouse
  • Michelle Sait
  • Kevin Aitchison
  • Morag Livingstone
  • Frank Wright
  • Kevin McLean
  • Neil F. Inglis
  • David G. E. Smith
  • David Longbottom
چکیده

BACKGROUND Chlamydia possess a unique family of autotransporter proteins known as the Polymorphic membrane proteins (Pmps). While the total number of pmp genes varies between Chlamydia species, all encode a single pmpD gene. In both Chlamydia trachomatis (C. trachomatis) and C. pneumoniae, the PmpD protein is proteolytically cleaved on the cell surface. The current study was carried out to determine the cleavage patterns of the PmpD protein in the animal pathogen C. abortus (termed Pmp18D). METHODOLOGY/PRINCIPAL FINDINGS Using antibodies directed against different regions of Pmp18D, proteomic techniques revealed that the mature protein was cleaved on the cell surface, resulting in a100 kDa N-terminal product and a 60 kDa carboxy-terminal protein. The N-terminal protein was further processed into 84, 76 and 73 kDa products. Clustering analysis resolved PmpD proteins into three distinct clades with C. abortus Pmp18D, being most similar to those originating from C. psittaci, C. felis and C. caviae. CONCLUSIONS/SIGNIFICANCE This study indicates that C. abortus Pmp18D is proteolytically processed at the cell surface similar to the proteins of C. trachomatis and C. pneumoniae. However, patterns of cleavage are species-specific, with low sequence conservation of PmpD across the genus. The absence of conserved domains indicates that the function of the PmpD molecule in chlamydia remains to be elucidated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcriptional analysis of in vitro expression patterns of Chlamydophila abortus polymorphic outer membrane proteins during the chlamydial developmental cycle

Chlamydophila abortus is the aetiological agent of ovine enzootic abortion. Sequencing, annotation and comparative analysis of the genome of C. abortus strain S26/3 has revealed variation in the loci encoding the polymorphic membrane proteins (Pmps). These Pmps resemble autotransporter proteins of the type V secretion system, suggesting an important role in chlamydial pathogenesis. The purpose ...

متن کامل

Expression patterns of five polymorphic membrane proteins during the Chlamydia abortus developmental cycle

It has been suggested that polymorphic membrane proteins (Pmps) belonging to the Type V autotransporter protein family play an important role in the pathogenesis of Chlamydia abortus (C. abortus; formerly Chlamydophila abortus) infection. In a previous study we demonstrated the expression of all the pmps at the transcriptional level. The purpose of this study was to measure the number of Pmp po...

متن کامل

Expression, Processing, and Localization of PmpD of Chlamydia trachomatis Serovar L2 during the Chlamydial Developmental Cycle

BACKGROUND While families of polymorphic membrane protein (pmp) genes have been identified in several Chlamydia species, their function remains mostly unknown. These proteins are of great interest, however, because of their location in the outer membrane and possible role in chlamydial virulence. METHODOLOGY/PRINCIPAL FINDING We analyzed the relative transcription of the pmpD gene, a member o...

متن کامل

Profiling Antibody Responses to Infections by Chlamydia abortus Enables Identification of Potential Virulence Factors and Candidates for Serodiagnosis

Enzootic abortion of ewes (EAE) due to infection with the obligate intracellular pathogen Chlamydia (C.) abortus is an important zoonosis leading to considerable economic loss to agriculture worldwide. The pathogen can be transmitted to humans and may lead to serious infection in pregnant women. Knowledge about epidemiology, clinical course and transmission to humans is hampered by the lack of ...

متن کامل

Analysis of pmpD Expression and PmpD Post-Translational Processing during the Life Cycle of Chlamydia trachomatis Serovars A, D, and L2

BACKGROUND The polymorphic membrane protein D (PmpD) in Chlamydia is structurally similar to autotransporter proteins described in other bacteria and may be involved in cellular and humoral protective immunity against Chlamydia. The mechanism of PmpD post-translational processing and the role of its protein products in the pathogenesis of chlamydial infection have not been very well elucidated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012